Chapter 2 Exercises
Exercises for Chapter 2 - Probability Theory on Coin Toss Space.
Exercise: Using Definition 2.1.1 show the following: (i) If \(A\) is an event and $A^c$ denotes its complement, then $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$
Solution Using the fact that $A^c$ is the event complement of $A$, we can say that:
\[A^c = \Omega \backslash A \implies A \cap B = \emptyset\]Equivalently, we have that:
\[A \cup A^c = \Omega\]Thus, we can express the probabilities under the probability measure $\mathbb{P}$:
\[\begin{align*} \mathbb{P}(A \cup A^c) &= \mathbb{P}(A) + \mathbb{P}(A^c)\\ \implies 1 &= \mathbb{P}(A) + \mathbb{P}(A^c)\\ \text{Since we have: } \mathbb{P}(\Omega) &= 1\\ \mathbb{P}(A^c) &= \mathbb{P}(A) + \mathbb{P}(A^c) \end{align*}\]as required.
(ii) If $A_1, A_2, \dots, A_N$ is a finite set of events, then:
\[\mathbb{P}\left(\bigcup_{n = 1}^N A_n \right) \le \sum_{n = 1}^N \mathbb{P}(A_n)\]If the events $A_1, A_2, \dots, A_N$ are disjoint, then equality holds in (2.8.1).
Solution
\[\bigcup_{n = 1}^N A_n = A_1 \cup A_2 \cup \cdots \cup A_N\]For our disjoint case, where $A_1, \dots, A_N$ for $A_i \hat A_j = \emptyset$ for $i \neq j$
\[\mathbb{P} \left(\bigcup_{n = 1}^N A_n \right) = \sum_{n = 1}^N \mathbb{P}(A_n)\]Generally, for $A_1, \dots, A_N$ is not disjoint, we apply the inclusion-exclusion principle, to prevent overlapping events:
\[\begin{align*} \mathbb{P} \left(\bigcup_{n = 1}^N A_n \right) &= \sum_{n = 1}^N \mathbb{P}(A_n) - \sum_{1 \le i \le j \le N} \mathbb{P}(A_i \hat A_j)) + \cdots\\ \mathbb{P} \left(\bigcup_{n = 1}^N A_n \right) &\le \sum_{n = 1}^N \mathbb{P}(A_n) \end{align*}\]Thus, all the probabilities are non-negative, and the sum of the higher order intersections is subtracted in the inclusion-exclusion principle.
Exercise Consider the stock price $S_3$ in Figure 2.3.1. (i) What is the distribution of $S_3$ under the risk-neutral probabilities $\tilde{p} = \frac{1}{2}, \tilde{q} = \frac{1}{2}$?
Solution
\[\begin{align*} &\text{Step 1: Possible values of } S_3 \\ &\quad S_3(HHH) = 32, \quad S_3(HHT) = 8, \quad S_3(HTH) = 8, \\ &\quad S_3(HTT) = 2, \quad S_3(THH) = 8, \quad S_3(THT) = 2, \quad S_3(TTT) = 0.50.\\ \\ &\text{Step 2: Probability of each path} \\ &\quad P(\text{sequence}) = (\tilde{p})^h (\tilde{q})^t \quad \text{where } \tilde{p} = \frac{1}{2}, \, \tilde{q} = \frac{1}{2}, \, h = \text{\# heads}, \, t = \text{\# tails}, \\ &\quad P(HHH) = \left(\frac{1}{2}\right)^3 = \frac{1}{8}, \\ &\quad P(HHT) = P(HTH) = P(THH) = \left(\frac{1}{2}\right)^3 = \frac{1}{8}, \\ &\quad P(HTT) = P(THT) = \left(\frac{1}{2}\right)^3 = \frac{1}{8}, \\ &\quad P(TTT) = \left(\frac{1}{2}\right)^3 = \frac{1}{8}.\\ \\ &\text{Step 3: Group identical values of } S_3 \\ &\quad S_3 = 32 \quad \text{occurs for } HHH: \quad P = \frac{1}{8}, \\ &\quad S_3 = 8 \quad \text{occurs for } HHT, HTH, THH: \quad P = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{8}, \\ &\quad S_3 = 2 \quad \text{occurs for } HTT, THT: \quad P = \frac{1}{8} + \frac{1}{8} = \frac{2}{8} = \frac{1}{4}, \\ &\quad S_3 = 0.50 \quad \text{occurs for } TTT: \quad P = \frac{1}{8}.\\ \\ &\text{Step 4: Final distribution of } S_3 \\ &\quad P(S_3 = 32) = \frac{1}{8}, \quad P(S_3 = 8) = \frac{3}{8}, \quad P(S_3 = 2) = \frac{1}{4}, \quad P(S_3 = 0.50) = \frac{1}{8}. \end{align*}\](ii) Compute $\tilde{\mathbb{E}}S_1, \tilde{\mathbb{E}}S_2, \tilde{\mathbb{E}}S_3$. What is the average rate of growth of the stock price under $\tilde{P}$?
\[\begin{align*} &\text{Step 1: Compute } \tilde{\mathbb{E}}S_1 \\ &\tilde{\mathbb{E}}S_1 = \tilde{p} S_1(H) + \tilde{q} S_1(T) \\ &= \frac{1}{2}(8) + \frac{1}{2}(2) \\ &= 4 + 1 = 5.\\ \\ &\text{Step 2: Compute } \tilde{\mathbb{E}}S_2 \\ &\tilde{\mathbb{E}}S_2 = \tilde{p} \tilde{\mathbb{E}}[S_2 \mid S_1 = H] + \tilde{q} \tilde{\mathbb{E}}[S_2 \mid S_1 = T] \\ &= \frac{1}{2}\left(\frac{1}{2}(16) + \frac{1}{2}(4)\right) + \frac{1}{2}\left(\frac{1}{2}(4) + \frac{1}{2}(1)\right) \\ &= \frac{1}{2}\left(8 + 2\right) + \frac{1}{2}\left(2 + 0.5\right) \\ &= \frac{1}{2}(10) + \frac{1}{2}(2.5) \\ &= 5 + 1.25 = 6.25.\\ \\ &\text{Step 3: Compute } \tilde{\mathbb{E}}S_3 \\ &\tilde{\mathbb{E}}S_3 = \sum_{i=1}^{7} P(S_3 = s_i) \cdot s_i, \quad \text{where } s_i \text{ are the possible values of } S_3. \\ &\tilde{\mathbb{E}}S_3 = \frac{1}{8}(32) + \frac{3}{8}(8) + \frac{1}{4}(2) + \frac{1}{8}(0.5) \\ &= 4 + 3 + 0.5 + 0.0625 \\ &= 7.5625. \end{align*}\]Thus, we get that the average rate of growth is:
\[\frac{\tilde{E} S_3}{S_0}^{\frac{1}{3}} = \left(\frac{7.5625}{4} \right)^{\frac{1}{3}} = 1.25\]Exercise Show that a convex function of a martingale is a submartingale. In other words, let $M_1, \dots, M_N$ be a martingale and let $\phi$ be a convex function. Show that $\phi(M_0), \phi(M_1), \dots, \phi(M_N)$ is a submartingale.
Solution To show that if $M_1, M_2, \dots, M_N$ is a martingale and $\phi$ is a convex function, then the sequence $\phi(M_0), \dots, \phi(M_N)$ is a submartingale, we proceed as follows:
Again, we define a martingale, $M_1, M_2, \dots$, as one that satisfies the property:
\[\mathbb{E}[M_{n + 1}] = M_n \quad\text{ for all } n\]We want to show that:
\[\mathbb{E}[\phi(M_{n + 1})] \ge \phi(M_n)\]Using convexity of $\phi$, we can apply Jensen’s inequality, which states that for any convex function $\phi$ and a random variable $X$, we have the following:
\[\begin{align*} \phi(\mathbb{E}[X]) &\le \mathbb{E}[\phi(X)]\\ \mathbb{E}[M_{n +1}] &= M_n\\ \phi(M_n) = \phi(\mathbb{E}[M_{n + 1}]) &\le \mathbb{E}[\phi(M_{n+1})]\\ \mathbb{E}[\phi(M_{n + 1})] &\ge \phi(M_n) \end{align*}\]which mean that $\phi(M_0), \phi(M_1), \dots, \phi(M_N)$ is a submartingale. Thus, a convex function of a martingale is indeed a submartingale.
Exercise: Toss a coin repeatedly. Assume the probability of head on each toss is $\frac{1}{2}$, as is the probability of tail. Let $X_j = 1$ if the $j$th toss results in a head and $X_j = -1$ if the $j$th toss results in a tail. Consider the stochastic process $M_0, M_1, M_2, \dots$ defined by $M_0 = 0$ and:
\[M_n = \sum_{j = 1}^n X_j,\quad n \ge 1\]This is called a symmetric random walk; with each head, it steps up one, and with each tail, it steps down one. (i) Using the properties of Theorem 2.3.2, show that $M_0, M_1, M_2, \dots$ is a martingale.
Solution Each $X_j$ is a random variable taking values $1$ and $-1$ with equal probability, so it had finite expectation:
\[\mathbb{E}[X_j] = \frac{1}{2}(1) + \frac{1}{2}(-1) = 0\]Since we have that:
\[M_n = \sum_{j = 1}^n X_j \implies \mathbb{E}[M_n] = \mathbb{E} \left[\sum_{j = 1}^n X_j \right] = \sum_{j = 1}^n \mathbb{E}[X_j] = 0\]Thus we have that $M_n$ has finite expectation and is integrable. Now, we just want to use the definition of $M_{n + 1}$ as well as $\mathbb{E}[M_{n + 1} | F_n] = M_n$ to show that $M_n$ is $F$-measurable and $M_n$ satisfies the conditions for martingales: |
Thus, we see that $M_n$ is a martingale, and satisfies all conditions such that $M_0, M_1, M_2, \dots$ is a martingale by definition of conditional expectation. Simply put, we pulled out what was know, in this case it was the $X_{n + 1}$ in the final two steps of the proof above, and computed directly to get $M_n$, giving, by definition, the required equation for a martingale.
(ii) Let $\sigma$ be a positive constant and for $n \ge 0$ define:
\[S_n = \exp{(\sigma M_n)} \left(\frac{2}{e^\sigma + e^{-\sigma}} \right)^n\]Show that $S_0, S_1, S_2, \dots$ is a martingale. Note that even though the symmetric random walk $M_n$ has no tendency to grow, the geometric symmetric random walk $\exp{\sigma M_n}$ does have a tendency to grow. This is the result of putting a martingale into the convex exponential function. In order to again have a martingale, we must discount the geometric symmetric random walk, using the term $\frac{2}{e^\sigma + e^{-\sigma}}$ as the discount rate. This term is strictly less than one unless $\sigma = 0$.
Solution
\[\begin{align*} S_n &= \exp(\sigma M_n) \left( \frac{2}{e^\sigma + e^{-\sigma}} \right)^n, \\ S_{n+1} &= \exp(\sigma (M_n + X_{n+1})) \left( \frac{2}{e^\sigma + e^{-\sigma}} \right)^{n+1}, \\ &= \exp(\sigma M_n) \exp(\sigma X_{n+1}) \left( \frac{2}{e^\sigma + e^{-\sigma}} \right)^{n+1}, \\ \mathbb{E}[S_{n+1} | \mathcal{F}_n] &= \exp(\sigma M_n) \left( \frac{2}{e^\sigma + e^{-\sigma}} \right)^{n+1} \mathbb{E}[\exp(\sigma X_{n+1})], \\ \mathbb{E}[\exp(\sigma X_{n+1})] &= \frac{1}{2} \left( \exp(\sigma) + \exp(-\sigma) \right), \\ &= \cosh(\sigma), \\ \mathbb{E}[S_{n+1} | \mathcal{F}_n] &= \exp(\sigma M_n) \left( \frac{2}{e^\sigma + e^{-\sigma}} \right)^{n+1} \cdot \cosh(\sigma), \\ \cosh(\sigma) &= \frac{e^\sigma + e^{-\sigma}}{2}, \\ \mathbb{E}[S_{n+1} | \mathcal{F}_n] &= \exp(\sigma M_n) \left( \frac{2}{e^\sigma + e^{-\sigma}} \right)^n, \\ &= S_n. \end{align*}\]Exercise Let $M_0, M_1, M_2, \dots$ be the symmetric random walk of the previous exercise and we define a new variable $I_0 = 0$ and:
\[I_n = \sum_{j = 0}^{n - 1} M_j(M_{j + 1} - M_j),\quad n = 1, 2, \dots\](i) Show that:
\[I_n = \frac{1}{2} M_n^2 - \frac{n}{2}\]Solution We start with the definition of $I_n$:
\[\begin{align} I_n &= \sum_{j=0}^{n-1} M_j (M_{j+1} - M_j) \end{align}\]We can use the relationship $M_{j+1} - M_j = X_{j+1}$, since $M_n = \sum_{i=1}^n X_i$, to rewrite:
\[\begin{align} I_n &= \sum_{j=0}^{n-1} M_j X_{j+1} \end{align}\]Now consider $M_n^2$:
\[\begin{align} M_n^2 &= \left( \sum_{j=1}^n X_j \right)^2, \\ &= \sum_{j=1}^n X_j^2 + 2 \sum_{1 \leq i < j \leq n} X_i X_j.\\ \\ \sum_{j=1}^n X_j^2 &= n.\\ \\ M_n^2 &= n + 2 \sum_{1 \leq i < j \leq n} X_i X_j.\\ 2 \sum_{1 \leq i < j \leq n} X_i X_j &= 2 \sum_{j=1}^{n-1} M_j X_{j+1} \end{align}\]Since each $M_j = \sum_{i=1}^j X_i$ represents the accumulated sum of $X_i$ terms up to step $j$ this is exactly the definition of $2 I_n$, which, after substituting back, gives:
\[M_n^2 = n + 2 I_n \implies I_n = \frac{1}{2} M_n^2 - \frac{n}{2}\](ii) Let $n$ be an arbitrary non-negative integer, and let $f(i)$ be an arbitrary function of a variable $i$. In terms of $n$ and $f$, define another function $g(i)$ satisfying:
\[\mathbb{E}_n [f(I_{n + 1})] = g(I_n)\]Note that although the function $g(I_n)$ on the right-hand side of this equation may depend on $n$, the only random variable that may appear in its argument is $I_n$; the random variable $M_n$ may not appear. You will need to use the formula in part $(i)$. The conclusion of part $(ii)$ is that the process $I_0, I_1, I_2, \dots$ is a Markov process.
Solution
\[\begin{align} \text{From part (i), we know:} \quad I_n &= \frac{1}{2} M_n^2 - \frac{n}{2}. \\ \text{For } I_{n+1}, \text{ substitute } n+1 \text{ for } n: \quad I_{n+1} &= \frac{1}{2} M_{n+1}^2 - \frac{n+1}{2}. \\ \text{Using } M_{n+1} = M_n + X_{n+1}, \text{ expand } M_{n+1}^2: \quad M_{n+1}^2 &= (M_n + X_{n+1})^2, \\ &= M_n^2 + 2 M_n X_{n+1} + X_{n+1}^2. \\ \text{Substitute into } I_{n+1}: \quad I_{n+1} &= \frac{1}{2} \left(M_n^2 + 2 M_n X_{n+1} + X_{n+1}^2\right) - \frac{n+1}{2}, \\ &= \frac{1}{2} M_n^2 + M_n X_{n+1} + \frac{1}{2} X_{n+1}^2 - \frac{n+1}{2}. \\ \text{Using } X_{n+1}^2 = 1, \text{ since } X_{n+1} \in \{-1, 1\}: \quad I_{n+1} &= \frac{1}{2} M_n^2 + M_n X_{n+1} + \frac{1}{2} - \frac{n+1}{2}. \\ \text{Group terms:} \quad I_{n+1} &= \frac{1}{2} M_n^2 - \frac{n}{2} + M_n X_{n+1}. \\ \text{Substitute } I_n = \frac{1}{2} M_n^2 - \frac{n}{2}: \quad I_{n+1} &= I_n + M_n X_{n+1}. \end{align}\] \[\begin{align*} \text{Define the function } g(I_n) \text{ such that:} \quad \mathbb{E}_n[f(I_{n+1})] &= g(I_n). \\ \text{Substitute } I_{n+1} = I_n + M_n X_{n+1} \text{ into } f(I_{n+1}): \quad \mathbb{E}_n[f(I_{n+1})] &= \mathbb{E}_n[f(I_n + M_n X_{n+1})]. \\ \text{Since } X_{n+1} \in \{-1, 1\} \text{ with equal probability:} \quad \mathbb{E}_n[f(I_{n+1})] &= \frac{1}{2} f(I_n + M_n) + \frac{1}{2} f(I_n - M_n). \\ \text{Using } M_n = \pm \sqrt{2 I_n + n}: \quad \mathbb{E}_n[f(I_{n+1})] &= \frac{1}{2} f(I_n + \sqrt{2 I_n + n}) + \frac{1}{2} f(I_n - \sqrt{2 I_n + n}). \\ \text{Define:} \quad g(I_n) &= \frac{1}{2} f(I_n + \sqrt{2 I_n + n}) + \frac{1}{2} f(I_n - \sqrt{2 I_n + n}). \end{align*}\]Exercise: Discrete-time Stochastic Integral Suppose $M_0, M_1, \dots, M_N$ is a martingale, and let $\Delta_0, \Delta_1, \dots, \Delta_{N - 1}$ be an adapted process. Define the discrete-time stochastic integral (sometimes called a martingale transform) $I_0, I_1, \dots, I_N$ by setting $I_0 = 0$ and:
\[I_n = \sum_{j = 0}^{n - 1} \Delta_j (M_{j + 1} - M_j),\quad n = 1, \dots, N\]Show that $I_0, I_1, \dots, I_N$ is a martingale.
Solution First we assume the following, then the computation is pretty straight forward:
\[I_0 = 0, \quad I_n = \sum_{j=0}^{n-1} \Delta_j (M_{j+1} - M_j), \quad n = 1, \dots, N\]- $I_n$ is adapted to $F_n$, the neutral filtration of $M_n$
- $\mathbb{E}[I_n] < \infty$ for all $n$
-
$\mathbb{E}n [I{n + 1} F_n] = I_n$
Thus, we have that $I_0, I_1, \dots, I_n$ is a martingale.
Exercise In a binomial model: Give an example of a stochastic process that is a martingale but is not Markov.
Solution Let $S_n$ denote the price of an asset at time $n$, following a binomial model: \(S_{n+1} = \begin{cases} u S_n & \text{with probability } p, \\ d S_n & \text{with probability } 1-p, \end{cases}\) where $u > 1$ (up factor), $d < 1$ (down factor), and $0 < p < 1$ (probability of an up move).
Define the filtration $\mathcal{F}_n$, representing the information available up to time $n$. We define the process $Y_n$ as: \(Y_n = S_n + Z_n,\) With $Z_n$ defined as:
\(Z_n = \sum_{j=0}^{n-1} S_j,\) the cumulative sum of past prices up to time $n-1$. To check if $Y_n$ is a martingale, we compute the conditional expectation $\mathbb{E}[Y_{n+1} | \mathcal{F}n]$: \(\mathbb{E}[Y_{n+1} | \mathcal{F}_n] = \mathbb{E}[S_{n+1} | \mathcal{F}_n] + \mathbb{E}[Z_{n+1} | \mathcal{F}_n].\) Since $S_n$ is a martingale under the appropriate risk-neutral measure: \(\mathbb{E}[S_{n+1} | \mathcal{F}_n] = S_n.\) For $Z{n+1}$, observe that: \(Z_{n+1} = Z_n + S_n \quad \implies \quad \mathbb{E}[Z_{n+1} | \mathcal{F}_n] = Z_n + S_n.\) Thus, $Y_n$ is a martingale. \(\mathbb{E}[Y_{n+1} | \mathcal{F}_n] = S_n + (Z_n + S_n) = Y_n.\) The Markov property requires: \(\mathbb{P}(Y_{n+1} | \mathcal{F}_n) = \mathbb{P}(Y_{n+1} | Y_n).\) However, $Y_n$ depends on the entire history of $S_n$ through \(Z_n = \sum_{j=0}^{n-1} S_j.\) The future evolution of $Y_n$ is influenced by $Z_n$, which cannot be determined solely from $Y_n$ at time $n$. Thus, $Y_n$ does not satisfy the Markov property.
Exercise Consider an $N$-period binomial model.
(i) Let $M_0, M_1, \dots, M_N$ and $M_0’, M_1’, \dots, M_N’$ be martingales under the risk-neutral measure $\tilde{P}$. Show that if $M_N = M_N’$ (for every possible outcome of the sequence of coin tosses), then, for each $n$ between $0$ and $N$, we have $M_n = M_n’$ (for every possible outcome of the sequence of coin tosses).
Solution Let $\tilde{\mathbb{P}}$ be the risk-neutral measure under which both $M_n$ and $M_n’$ are martingales. The martingale property means: \(\mathbb{E}_{\tilde{\mathbb{P}}}[M_{n+1} | \mathcal{F}_n] = M_n, \quad \mathbb{E}_{\tilde{\mathbb{P}}}[M_{n+1}' | \mathcal{F}_n] = M_n'.\) We are given that: \(M_N = M_N' \quad \text{for all possible outcomes of the sequence of coin tosses}.\) We aim to show: \(M_n = M_n' \quad \text{for all } n \text{ (from } 0 \text{ to } N\text{)}.\) We use backward induction, starting from $n = N$ and moving backward to $n = 0$. Base Case ($n = N$): From the problem statement, we know: \(M_N = M_N' \quad \text{for all outcomes}.\) Inductive Hypothesis: Assume that $M_{k+1} = M_{k+1}’$ for all outcomes for some $k \leq N-1$. We will show that $M_k = M_k’$. Inductive Step: Since $M_n$ and $M_n’$ are martingales under $\tilde{\mathbb{P}}$, we have: \(M_k = \mathbb{E}_{\tilde{\mathbb{P}}}[M_{k+1} | \mathcal{F}_k], \quad M_k' = \mathbb{E}_{\tilde{\mathbb{P}}}[M_{k+1}' | \mathcal{F}_k].\) By the inductive hypothesis, $M_{k+1} = M_{k+1}’$ for all outcomes. Therefore: \(\mathbb{E}_{\tilde{\mathbb{P}}}[M_{k+1} | \mathcal{F}_k] = \mathbb{E}_{\tilde{\mathbb{P}}}[M_{k+1}' | \mathcal{F}_k].\) Thus: \(M_k = M_k'.\)
(ii) Let $V_N$ be the payoff at time $N$ of some derivative security. This is a random variable that can depend on all $N$ coin tosses. Define recursively $V_{N - 1}, V_{N - 2}, \dots, V_0$ by the algorithm (1.2.16) of Chapter 1. Show that:
\[V_0, \frac{V_1}{1 + r}, \dots, \frac{V_{N - 1}}{(1 + r)^{N - 1}}, \frac{V_{N}}{(1 + r)^N}\]is a martingale under $\tilde{\mathbb{P}}$.
Solution The algorithm defines the value of the derivative security at earlier times as: \(V_n = \frac{1}{1 + r} \tilde{\mathbb{E}}[V_{n+1} | \mathcal{F}_n],\) where:
- $V_n$ is the value of the derivative security at time $n$,
- $\tilde{\mathbb{E}}$ is the expectation under the risk-neutral measure,
- $\mathcal{F}_n$ is the filtration (information up to time $n$),
- $r$ is the risk-free rate.
To show that the given sequence is a martingale under $\tilde{\mathbb{P}}$, we need to verify that:
\[\mathbb{E}_{\tilde{\mathbb{P}}} \left[ \frac{V_{n+1}}{(1 + r)^{n+1}} \bigg| \mathcal{F}_n \right] = \frac{V_n}{(1 + r)^n}.\]Start with $V_n$, which is recursively defined as:
\[V_n = \frac{1}{1 + r} \tilde{\mathbb{E}}[V_{n+1} | \mathcal{F}_n].\]\(\frac{V_n}{(1 + r)^n} = \frac{1}{(1 + r)^n} \cdot \frac{1}{1 + r} \tilde{\mathbb{E}}[V_{n+1} | \mathcal{F}_n].\) Simplify the factor $\frac{1}{(1 + r)^n} \cdot \frac{1}{1 + r}$: \(\frac{V_n}{(1 + r)^n} = \frac{1}{(1 + r)^{n+1}} \tilde{\mathbb{E}}[V_{n+1} | \mathcal{F}_n].\) Since conditional expectation is linear and $\frac{V_{n+1}}{(1 + r)^{n+1}}$ is $\mathcal{F}_n$-measurable:
\[\mathbb{E}_{\tilde{\mathbb{P}}} \left[ \frac{V_{n+1}}{(1 + r)^{n+1}} \bigg| \mathcal{F}_n \right] = \frac{V_n}{(1 + r)^n}.\]This proves that: \(V_0, \frac{V_1}{1 + r}, \dots, \frac{V_{N-1}}{(1 + r)^{N-1}}, \frac{V_N}{(1 + r)^N}\) is a martingale under the risk-neutral measure $\tilde{\mathbb{P}}$, as the conditional expectation at each step satisfies the martingale property:
\[\mathbb{E}_{\tilde{\mathbb{P}}} \left[ \frac{V_{n+1}}{(1 + r)^{n+1}} \bigg| \mathcal{F}_n \right] = \frac{V_n}{(1 + r)^n}.\](iii) Using the risk-neutral pricing formula:
\[\frac{V_n}{(1 + r)^n} = \tilde{\mathbb{E}}_n \left[\frac{V_N}{(1 + r)^N} \right] \Longleftrightarrow V_n = \tilde{\mathbb{E}}_n \left[\frac{V_N}{(1 + r)^{N - n}} \right]\]we define:
\[V_n' = \tilde{\mathbb{E}}_n \left[\frac{V_N}{(1 + r)^{N - n}} \right],\quad n = 0, 1, \dots, N - 1\]Show that:
\[V_0', \frac{V_1'}{1 + r}, \cdots, \frac{V_{N-1}'}{(1 + r)^{N - 1}},\frac{V_N}{(1 + r)^N}\]is a martingale.
Solution
\[\begin{align*} V_n' &= \tilde{\mathbb{E}}_n \left[\frac{V_N}{(1 + r)^{N - n}} \right], \quad n = 0, 1, \dots, N-1. \\ \frac{V_n'}{(1 + r)^n} &= \frac{1}{(1 + r)^n} \tilde{\mathbb{E}}_n \left[\frac{V_N}{(1 + r)^{N - n}} \right], \\ &= \tilde{\mathbb{E}}_n \left[\frac{V_N}{(1 + r)^N} \right]. \\ \frac{V_{n+1}'}{(1 + r)^{n+1}} &= \frac{1}{(1 + r)^{n+1}} \tilde{\mathbb{E}}_{n+1} \left[\frac{V_N}{(1 + r)^{N - (n+1)}} \right]. \\ \mathbb{E}_{\tilde{\mathbb{P}}} \left[ \frac{V_{n+1}'}{(1 + r)^{n+1}} \Bigg| \mathcal{F}_n \right] &= \mathbb{E}_{\tilde{\mathbb{P}}} \left[ \frac{1}{(1 + r)^{n+1}} \tilde{\mathbb{E}}_{n+1} \left[\frac{V_N}{(1 + r)^{N - (n+1)}} \right] \Bigg| \mathcal{F}_n \right]. \\ \mathbb{E}_{\tilde{\mathbb{P}}} \left[ \frac{V_{n+1}'}{(1 + r)^{n+1}} \Bigg| \mathcal{F}_n \right] &= \frac{1}{(1 + r)^{n+1}} \tilde{\mathbb{E}}_n \left[\frac{V_N}{(1 + r)^{N - (n+1)}} \right]. \\ \frac{1}{(1 + r)^{n+1}} &= \frac{1}{(1 + r)^n} \cdot \frac{1}{1 + r}. \\ \mathbb{E}_{\tilde{\mathbb{P}}} \left[ \frac{V_{n+1}'}{(1 + r)^{n+1}} \Bigg| \mathcal{F}_n \right] &= \frac{1}{(1 + r)^n} \tilde{\mathbb{E}}_n \left[\frac{V_N}{(1 + r)^{N - n}} \right]. \\ \mathbb{E}_{\tilde{\mathbb{P}}} \left[ \frac{V_{n+1}'}{(1 + r)^{n+1}} \Bigg| \mathcal{F}_n \right] &= \frac{V_n'}{(1 + r)^n}. \end{align*}\](iv) Conclude that $V_n = V_n’$ for every $n$ (i.e., the algorithm (1.2.16) of Theorem 1.2.2 of Chapter 1 gives the same derivative security prices as the risk-neutral pricing formula (2.4.11)).
\begin{document}
\begin{tikzpicture}
% Tree Nodes
\node (S0) at (0,0) {$S_0$};
\node (S1H) at (2,2.5) {$S_1(H) = uS_0$};
\node (S1T) at (2,-2.5) {$S_1(T) = dS_0$};
\node (S2HH) at (4,4.5) {$S_2(HH) = u^2S_0$};
\node (S2HT) at (4,0) {$S_2(HT) = S_2(TH) = udS_0$};
\node (S2TT) at (4,-4.5) {$S_2(TT) = d^2S_0$};
\node (S3HHH) at (6,5.5) {$S_3(HHH) = u^3S_0$};
\node (S3HHT) at (6,3) {$S_3(HHT) = S_3(HTH) = S_3(THH) = u^2dS_0$};
\node (S3HTT) at (6,-3) {$S_3(HTT) = S_3(THT) = S_3(TTH) = ud^2S_0$};
\node (S3TTT) at (6,-5.5) {$S_3(TTT) = d^3S_0$};
% Connections
\draw[->, thick] (S0) -- (S1H);
\draw[->, thick] (S0) -- (S1T);
\draw[->, thick] (S1H) -- (S2HH);
\draw[->, thick] (S1H) -- (S2HT);
\draw[->, thick] (S1T) -- (S2HT);
\draw[->, thick] (S1T) -- (S2TT);
\draw[->, thick] (S2HH) -- (S3HHH);
\draw[->, thick] (S2HH) -- (S3HHT);
\draw[->, thick] (S2HT) -- (S3HHT);
\draw[->, thick] (S2HT) -- (S3HTT);
\draw[->, thick] (S2TT) -- (S3HTT);
\draw[->, thick] (S2TT) -- (S3TTT);
% Time Labels
\node at (0,-1) {$t = 0$};
\node at (2,-3) {$t = 1$};
\node at (4,-5) {$t = 2$};
\node at (6,-6) {$t = 3$};
\end{tikzpicture}
\end{document}
Solution This can be simply proven via induction: Let’s start with our definitions,
\[V_n = \frac{1}{1 + r} \tilde{\mathbb{E}}_n [V_{n + 1} | F_n]\quad V_n' = \tilde{\mathbb{E}}_n \left[\frac{V_N}{(1 + r)^{N - n}} \right]\]Base Case: $n = N \implies V_N = V_N’$ Inductive Step: We want to show $V_k = V_k’$ for all $k = N - 1, N - 2, \dots, 0$ Assume $V_{k + 1} = V_{k + 1}’$ for $k \le N - 1$
\[\begin{align*} V_k &= \frac{1}{1 + r} \tilde{\mathbb{E}}_k [V_{k + 1} | F_k]\\ &= \frac{1}{1 + r} \tilde{\mathbb{E}}_k [V_{k + 1}' | F_k]\\ \\ V_{k + 1}' &= \tilde{\mathbb{E}}_{k + 1} \left[\frac{V_N}{(1 + r)^{N - (k + 1)}} \right]\\ &= \frac{1}{1 + r} \tilde{\mathbb{E}}_k \left[\frac{V_N}{(1 + r)^{N - (k + 1)}} \right]\\ &= \tilde{\mathbb{E}}_k \left[\frac{V_N}{(1 + r)^{N - k}} \right] \end{align*}\]Thus, we have $V_k = V_k’$. Therefore, we’ve shown that $V_n = V_n’$ for all $n = 0, 1, \dots, N$. Therefore, 1.2.16 gives the same derivative security prices as the risk-neutral pricing formula.
Exercise: Stochastic Volatility, Random Interest Rate Consider a two-period stochastic volatility, random interest rate model of the type described in Exercise 1.9, shown in the image.
The stock prices and interest rates are shown in the following:
\begin{document}
\begin{tikzpicture}
% Tree Nodes
\node (S0) at (0,0) {$S_0$};
\node (S1H) at (2,2.5) {$S_1(H) = uS_0$};
\node (S1T) at (2,-2.5) {$S_1(T) = dS_0$};
\node (S2HH) at (4,4.5) {$S_2(HH) = u^2S_0$};
\node (S2HT) at (4,0) {$S_2(HT) = S_2(TH) = udS_0$};
\node (S2TT) at (4,-4.5) {$S_2(TT) = d^2S_0$};
\node (S3HHH) at (6,5.5) {$S_3(HHH) = u^3S_0$};
\node (S3HHT) at (6,3) {$S_3(HHT) = S_3(HTH) = S_3(THH) = u^2dS_0$};
\node (S3HTT) at (6,-3) {$S_3(HTT) = S_3(THT) = S_3(TTH) = ud^2S_0$};
\node (S3TTT) at (6,-5.5) {$S_3(TTT) = d^3S_0$};
% Connections
\draw[->, thick] (S0) -- (S1H);
\draw[->, thick] (S0) -- (S1T);
\draw[->, thick] (S1H) -- (S2HH);
\draw[->, thick] (S1H) -- (S2HT);
\draw[->, thick] (S1T) -- (S2HT);
\draw[->, thick] (S1T) -- (S2TT);
\draw[->, thick] (S2HH) -- (S3HHH);
\draw[->, thick] (S2HH) -- (S3HHT);
\draw[->, thick] (S2HT) -- (S3HHT);
\draw[->, thick] (S2HT) -- (S3HTT);
\draw[->, thick] (S2TT) -- (S3HTT);
\draw[->, thick] (S2TT) -- (S3TTT);
% Time Labels
\node at (0,-1) {$t = 0$};
\node at (2,-3) {$t = 1$};
\node at (4,-5) {$t = 2$};
\node at (6,-6) {$t = 3$};
\end{tikzpicture}
\end{document}
(i) Determine the risk-neutral probabilities:
\[\tilde{\mathbb{P}}(HH), \tilde{\mathbb{P}}(HT), \tilde{\mathbb{P}}(TH), \tilde{\mathbb{P}}(TT)\]such that the time-zero value of an option that pays off $V_2$ at time two is given by the risk-neutral pricing formula:
\[V_0 = \tilde{\mathbb{E}} \left[\frac{V_2}{(1 + r_0)(1 + r_2)} \right]\]Solution We first want to find the expected value of $S_2$ given the following:
\[\begin{align*} &\tilde{\mathbb{E}}[S_2] = \tilde{\mathbb{P}}(HH)S_2(HH) + \tilde{\mathbb{P}}(HT)S_2(HT) + \tilde{\mathbb{P}}(TH)S_2(TH) + \tilde{\mathbb{P}}(TT)S_2(TT), \\ &\tilde{\mathbb{E}}[S_2] = S_0 \left[ p^2 u^2 + 2p(1 - p)ud + (1 - p)^2 d^2 \right]. \end{align*}\]Then using the martingale condition and assuming $(1 + r_0)(1 + r_2) = 1$:
\[\begin{align*} &S_0 = \frac{\tilde{\mathbb{E}}[S_2]}{(1 + r_0)(1 + r_2)}, \\ &S_0 = S_0 \left[ p^2 u^2 + 2p(1 - p)ud + (1 - p)^2 d^2 \right], \\ &1 = p^2 u^2 + 2p(1 - p)ud + (1 - p)^2 d^2. \end{align*}\]Given our parameters:
\[\begin{align*} &S_0 = 80, \quad u = \frac{80 + 10}{80} = 1.125, \quad d = \frac{80 - 10}{80} = 0.875. \\ &\tilde{\mathbb{E}}[S_2] = S_0 \left[ p^2 (1.125)^2 + 2p(1 - p)(1.125)(0.875) + (1 - p)^2 (0.875)^2 \right], \\ &\tilde{\mathbb{E}}[S_2] = 80 \left[ p^2 (1.265625) + 2p(1 - p)(0.984375) + (1 - p)^2 (0.765625) \right]. \end{align*}\]And thus, we can directly compute:
\[\begin{align*} &1 = p^2 (1.265625) + 2p(1 - p)(0.984375) + (1 - p)^2 (0.765625), \\ &1 = 1.265625p^2 + 1.96875p - 1.96875p^2 + 0.765625 - 1.53125p + 0.765625p^2, \\ &1 = (1.265625 - 1.96875 + 0.765625)p^2 + (1.96875 - 1.53125)p + 0.765625, \\ &1 = 0.0625p^2 + 0.4375p + 0.765625. \end{align*}\] \[\begin{align*} &0.0625p^2 + 0.4375p - 0.234375 = 0, \\ &p^2 + 7p - 3.75 = 0, \\ &p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \quad a = 1, \, b = 7, \, c = -3.75, \\ &p = \frac{-7 \pm \sqrt{7^2 - 4(1)(-3.75)}}{2}, \\ &p = \frac{-7 \pm \sqrt{49 + 15}}{2}, \\ &p = \frac{-7 \pm \sqrt{64}}{2}, \\ &p = \frac{-7 + 8}{2} = \frac{1}{2}, \quad p = \frac{-7 - 8}{2} = -\frac{15}{2} \, (\text{discarded}). \end{align*}\]Thus our final probability is the following:
\[\begin{align*} &p = \frac{1}{2}, \quad \tilde{\mathbb{P}}(HH) = p^2 = \frac{1}{4}, \quad \tilde{\mathbb{P}}(HT) = \tilde{\mathbb{P}}(TH) = p(1 - p) = \frac{1}{4}, \quad \tilde{\mathbb{P}}(TT) = (1 - p)^2 = \frac{1}{4}. \end{align*}\](ii) Let $V_2 = (S_2 - 7)^+$. Compute $V_0, V_1(H)$ and $V_(T)$.